The dashed red lines here are a region of 10 from the tip with the red square in the center representing the tip of the projection

The dashed red lines here are a region of 10 from the tip with the red square in the center representing the tip of the projection.(TIF) pcbi.1006241.s001.tif (537K) GUID:?D2140B4E-8827-4CB3-AABF-23E8C295EE13 S2 Fig: Spherical coordinates of the center of active Cdc42 polarization for multiple realizations with polarized initial conditions, for the combined Cdc42 and polarisome model. pcbi.1006241.s001.tif (537K) GUID:?D2140B4E-8827-4CB3-AABF-23E8C295EE13 S2 Fig: Spherical coordinates of the center of active Cdc42 polarization for multiple realizations with polarized initial conditions, for the combined Cdc42 and polarisome model. To initially test the hypothesis that this actin network and vesicle traffic could overcome the negative effect of the tip shaped geometry, we simulated a combined model of Cdc42 and actin polarization. As with previous simulations, starting from a polarized initial condition in the tip of the projection, the Cdc42 cap is seen to drift away from the YM348 tip. This is usually even with the added positive feedback from the polarisome to Cdc42. It should also be noted that the length scale of actin and Spa2 polarization is usually smaller than for Cdc42. While this isnt definitive proof that actin isnt helping to keep the polarization cap in the tip of the projection, it does show that for these reaction-diffusion models of Cdc42 and actin polarization, there is a persistent bias away from the tip.(TIF) pcbi.1006241.s002.tif (542K) GUID:?3BC3EBE7-C4B7-4140-A698-C0624D37302D S3 Fig: Spherical coordinates of the center of Spa2 polarization for multiple realizations with polarized initial conditions, for the YM348 combined Cdc42 and polarisome model. These are the corresponding centers of Spa2 polarization for the results shown in S2 Fig.(TIF) pcbi.1006241.s003.tif (501K) GUID:?10533401-F415-4DDD-9532-7C56BC1DE7AE Plxnd1 S4 Fig: Spherical coordinates of the center of active Cdc42 polarization for multiple realizations with random initial conditions, with constant YM348 density rather than constant molecule count. Here, we tested our results presented in S1 Fig by adjusting the molecule count to keep YM348 a constant density for each geometry (opposed to a constant molecule count). For these relatively small changes in total volume, the overall behavior of a bias away from the tip is usually preserved for both constant molecule and constant density.(TIF) pcbi.1006241.s004.tif (459K) GUID:?971C5F88-A861-495A-99C6-E81A11176D13 S5 Fig: Spherical coordinates of the center of Spa2 polarization for multiple realizations with polarized initial conditions, for the polarisome model with a fixed active Cdc42 distribution as input. These results are to be compared to the results presented in S2 and S3 Figs. Here the active Cdc42 profile is usually fixed and polarized in the tip of the geometry, rather than fully dynamic as above. This, presumably, would make it more likely for Spa2 to polarize in the tip as geometry is usually no longer having an effect around the Cdc42 dynamics yet YM348 the geometry still appears to have an effect around the polarisome. This further supports our general result of geometry having a significant impact on the dynamics of polarization.(TIF) pcbi.1006241.s005.tif (513K) GUID:?C168FCD2-594D-41F6-AF0D-D9F6C58FA91E S6 Fig: Spherical coordinates of the center of active Cdc42 polarization for multiple realizations with polarized initial conditions and one visualization of drifting with diffusion in the cytoplasm = 10 = 50 = 10 (which is the recruitment of Bni1 by active Cdc42) by a factor of 100. We see that this is in fact enough to stabilize Spa2 polarization in the tip of projection shaped geometries. A: Spherical coordinates of the center of Spa2 polarization with the increased value of versus distance from the tip of the projection of the active Cdc42 polarization for multiple realizations with polarized initial conditions. These results are to be compared to the results presented in Fig 3 of the main text. A: Here we plot versus the distance from the tip rather than the spherical coordinates of the polarization cap as above. B: A histogram of the distance away from the tip for each shape with multiple realizations. As.