Silk cocoons are composed of fiber proteins (fibroins) and adhesive glue

Silk cocoons are composed of fiber proteins (fibroins) and adhesive glue proteins (sericins), which provide a physical barrier to protect the inside pupa. used to reveal the extracted components in the scaffold silk, the outermost cocoon layer. A total of 129 proteins were identified, 30 of which were annotated as protease inhibitors. Protease inhibitors accounted for 89.1% in abundance among extracted proteins. These protease inhibitors have many intramolecular disulfide bonds to maintain their stable structure, and remained active after being boiled. This study added a new understanding to the antimicrobial function of the cocoon. Introduction The silkworm cocoon has been well analyzed as the silkworm is the model lepidopteran insect [1C6], and its cocoon has important economic value. An early study revealed that cocoon is mainly composed of fibroins and sericins [7], which have prominent physical properties to protect pupae [8]. Furthermore, some proteins with small molecular weight were found in the cocoon, including two protease inhibitors and two seroins [9C10]. The expression of protease inhibitors changed after contamination by bacteria, fungi or viruses [11], indicating that they are immunity related proteins. Furthermore, many protease inhibitors showed inhibitory activity against the fungal proteases, as well as the germination of conidia [12C15]. The expression buy 1010411-21-8 of seroins was up-regulated after contamination with bacteria and computer virus [16C18]. Moreover, seroins were found showing inhibitory activity against the growth of bacteria and nucleopolyhedrovirus [18]. In addition, some other immunity related proteins were recognized in the silk gland and silk in previous studies. For example, a 18 wheeler protein was recognized in silk, which was speculated to have antimicrobial effects [19]. The hemolin was found to have expression in the silk gland and function as opsonin in response to bacterial challenge [20]. By using liquid chromatographyCtandem mass spectrometry (LC-MS/MS), Dong et al. (2013) recognized hundreds of proteins in seven kinds of silk fibers spun by silkworm larvae at different developmental stages [21]. Besides protease inhibitors and seroins, some other antimicrobial components were recognized in the silk. The presence of antioxidant enzymes, such as peroxidase, thioredoxin, and superoxide dismutase in the silk suggested that reactive oxygen species (ROS) may be generated during spinning, which has important roles in immune responses [22]. Fungi have potential abilities to destruct the cocoon by secreting proteases. To buy 1010411-21-8 uncover the resistant function of cocoon proteins against the fungi, we extracted proteins from your cocoon by Tris-HCl buffer, buy 1010411-21-8 and then determined their impact on the fungal growth. A fungal protease was used as the target enzyme to measure the activities of protease inhibitors in the cocoon. Furthermore, LC-MS/MS was used to identify the extracted cocoon proteins. Materials and Methods Materials were provided by the State Key Laboratory of Silkworm Genome Biology, Southwest University or college, China. The silkworms were reared on mulberry leaves at a stable heat of 25C. Cocoon silk was collected and stored at 4C until used. The fungus was cultured on potato dextrose agar (PDA) medium at 25C and harvested after 2 weeks. Extraction and heat treatment of proteins from your cocoon The cocoon was divided into six layers and then was slice into small fragments. The corresponding layers from four cocoons were collected as one group and then were weighted. Proteins were extracted from cocoon with 3 mL of 100 mM Tris-HCl buffer (pH 7.5) [19] for 30 min in a rotary shaker at 220 rpm at 37C. After incubation, the extracts were centrifuged at 12,500 for 10 min, at 4C. The precipitates were collected and dried in room heat and then were weighted. The supernatant was filtered through a 0.22 m Millex-GP membrane (EMD Millipore, USA). Heat treatment of proteins from your cocoon Proteins from different cocoon layers (extracted according to section 2.2) were boiled for Rabbit Polyclonal to STAT1 (phospho-Tyr701) 10 min and cooled on ice. Then, they were centrifuged at 14,500 for 10 min, at 4C. The supernatant and precipitate were then collected separately. Visualization of protease inhibitory activity in the cocoon The activities of protease inhibitors were visualized by the method of Uriel and Berges [23], with a slight modification. Equal amounts (5 g) of proteins (extracted according to section 2.2) were separated by the native polyacrylamide gel electrophoresis (PAGE). After electrophoresis, the gels were incubated at 37C for 20 min with proteinase K solutions (0.07 mg/mL, SigmaCAldrich, USA) in.